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Analysis of a controlled phase gate using circular Rydberg states
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We propose and analyze the implementation of a two-qubit quantum gate using circular Rydberg states with
maximum orbital angular momentum. The intrinsic quantum gate error is limited by the finite Rydberg lifetime
and finite Rydberg blockade shift. Circular states have much longer radiative lifetimes than low orbital angular
momentum states and are therefore candidates for high-fidelity gate operations. We analyze the dipole-dipole
interaction of two circular state Rydberg atoms and present numerical simulations of quantum process tomography
to find the intrinsic fidelity of a Rydberg blockade-controlled phase gate. Our analysis shows that the intrinsic
gate error can be less than 9 × 10−6 for circular Cs atoms in a cryogenic environment.
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I. INTRODUCTION

Highly excited Rydberg atoms are promising candidates
for quantum computing experiments, due to their long lifetime
and strong interactions [1,2]. This strong, long-range and con-
trollable interaction leads to the so-called Rydberg blockade
effect in which only one atom in an ensemble can be excited
into a Rydberg state if the ensemble size is smaller than the
Rydberg blockade radius. Using the Rydberg blockade effects,
various schemes were proposed for fast quantum gates [1,3–6],
entangled state preparation [7], quantum algorithms [8,9],
quantum simulators [10], and efficient quantum repeaters [11].
Rydberg blockade, the central ingredient of the above schemes,
has been demonstrated between two individual neutral atoms
held in optical traps [12,13] and was used to demonstrate a
two-qubit-controlled NOT gate and entangled Bell states with
fidelity of about 0.58–0.75 after atom loss correction [14–17].

We can estimate the fidelity error of a Rydberg blockade
entangling gate from the atomic physics of the states used for
Rydberg blockade [1,2,18]. The intrinsic gate errors are due to
the finite lifetime of Rydberg states and the finite strength of
the Rydberg-Rydberg blockade interaction. A rigorous fidelity
measure for the gate operation can be found from numerical
integration of the master equation describing the gate evolution
using real atomic parameters. The master equation solutions
are then used to simulate quantum process tomography from
which the gate process fidelity can be extracted. Using this
approach we have shown that with low angular momentum
ns,np, or nd states it is in principle possible to reach
quantum process errors of 2 × 10−3 for both Rb and Cs atoms
[19]. An error slightly less than 1 × 10−3 is projected for
cryogenic operation at 4 K, due to the increase in Rydberg
lifetime. While these results are promising it is desirable for
scalable implementation of fault-tolerant quantum computing
architectures to reach gate errors that are as small as possible.
As the requirement for fault tolerance is strongly architecture
dependent [20–22] there is no precise requirement for the gate
error. Nevertheless in order to avoid a blow up in the number of
qubits needed for implementation the gate error should be well
below the theoretical threshold, and gate errors in the range of
10−4 may be necessary for realization of concatenated code
based error correction.

In this paper we propose implementing the two-qubit Ryd-
berg blockade using high angular momentum circular Rydberg

states |m| = l = n − 1 where m is the magnetic quantum
number, l is the orbital quantum number, and n is the principal
quantum number. In a cryogenic environment the circular
states have radiative lifetimes τ ∼ n5 compared to n3 for low
angular momentum states. The dipole-dipole interaction and
the blockade shift for the high orbital angular momentum state
is comparable with the low angular momentum state. Thus the
intrinsic error for the quantum gate via Rydberg blockade
will be suppressed. We present numerical simulations of
quantum process tomography to find the intrinsic fidelity
of a Rydberg blockade-controlled phase gate using circular
Rydberg states. Our analysis shows that the intrinsic gate error
extracted from simulated quantum process tomography can be
below 9 × 10−6 for specific states of Cs atoms in a cryogenic
environment.

In Sec. II we present the scheme of a two-qubit quantum
gate using circular Rydberg states. In Sec. III we calculate
the dipole-dipole interaction between two alkali metal atoms
in circular states as well as their lifetimes. In Sec. IV we
give analytical estimates of the intrinsic gate error in the
computational basis using circular states. In Sec. V we
perform simulated quantum process tomography of a two-
qubit controlled-phase gate accounting only for intrinsic errors
from Sec. IV. This analysis shows that in a well-designed
experiment where technical errors are minimized it should
be possible to reach low gate errors, below fault tolerance
thresholds. A discussion and summary is presented in Sec. VI.

II. A TWO-QUBIT QUANTUM GATE WITH CIRCULAR
RYDBERG STATES

The scheme to implement a two-qubit quantum gate is the
same as in the original proposal by Jaksch et al. [1] except
that we use circular Rydberg states. Consider two atoms
(one is control and the other is target) separated by several
micrometers. We encode qubits in two internal atomic ground
states (e.g., hyperfine states) denoted by |1〉 and |0〉 and |r〉 is
a circular Rydberg state as shown in Fig. 1.

A two-qubit CZ gate is implemented using a three pulse
sequence between |1〉 and |r〉 (pulses 1–3 in Fig. 1): first we
apply a Rydberg π pulse to the control atom, then a Rydberg
2π pulse to the target atom, and finally a Rydberg π pulse
to bring the control atom back to the |1〉 state. The strong
interaction between atoms in |r〉 states gives a blockade shift
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FIG. 1. (Color online) (a) Scheme of implementing a two-qubit
quantum gate with circular Rydberg states. (b) Pulse sequence for the
CZ gate (pulses 1–3).

B which blocks excitation of the target atom if the control atom
has been Rydberg excited. This leads to a conditional phase
shift of the two-atom state which can be used to generate
entanglement.

Although the pulse sequence is the same as has been
demonstrated in experiments with low-angular momentum
states [2] it is an outstanding technical challenge to rapidly
excite the atoms to circular Rydberg states with high angular
momenta. We will first calculate the achievable gate error
assuming that we can coherently drive atoms between |1〉
and Rydberg state |r〉 with high fidelity. We will return to
the question of Rydberg excitation fidelity in Sec. VI.

III. RYDBERG BLOCKADE SHIFT AND LIFETIMES
OF CIRCULAR STATES

The fidelity error of a Rydberg blockade quantum gate
scales as [2,18] 1/(Bτ )2/3. We therefore need to calculate
the blockade shift B and lifetime τ for circular states. The
Rydberg blockade effect arises from the interaction between
two atoms in Rydberg states. It can be shown (see the Appendix
in Ref. [23]) that for few micrometer atomic separations the
multipolar interaction is dominated by the dipole-dipole term.
When one of the atoms is excited to a Rydberg state, the
Rydberg level of the other atom is shifted by the dipole-dipole
interaction, which blocks any subsequent excitation.

We write two-atom Rydberg states of atoms A,B as
|n,l,m〉A|n′,l′,m′〉B and the circular state with principal quan-
tum number n as |cn〉 = |n,n − 1,n − 1〉. We are considering
a situation where the interacting atoms are at positions defined
by optical or other types of traps. Therefore there is a well-
defined “molecular” axis connecting the two atoms. When the
atomic angular momentum is quantized in a coordinate system
parallel to the molecular axis the dipole-dipole interaction
preserves the angular momentum projection m + m′ and for
the symmetric circular state |C〉 = |cncn〉 = |cn〉A|cn〉B , the
nearest energy state is |C ′〉 = |cn+1cn−1〉 = |cn+1〉A|cn−1〉B
with the energy defect �δ = EH

2 (− 1
(n+1)2 − 1

(n−1)2 + 2
n2 ) where

EH is the Hartree energy. The second nearest state which
is dipole coupled to |C〉 is |n + 2,n,n〉A|cn−1〉B with the
energy defect �δ′ = EH

2 (− 1
(n+2)2 − 1

(n−1)2 + 2
n2 ). For n = 100,

δ = −3 × 10−8EH while δ′ = 0.93 × 10−6EH. Since δ ∼ n−4

while δ′ ∼ n−3, the ratio δ/δ′ tends to zero for large n. It is
thus a good approximation, for the situation considered here, to

keep only the two states |C〉 and |C ′〉 in the Rydberg blockade
analysis.

With this approximation the Hamiltonian for the two level
system |C〉 and |C ′〉 is

H =
[

0 V̂
(0)
dd

V̂
(0)
dd δ

]
, (1)

where the dipole-dipole interaction operator is V̂
(0)

dd =
−

√
6e2

4πε0R3

∑
p C20

1p1−prAprB−p with matrix element

Vdd = 〈cn+1cn−1|V̂ (0)
dd |cncn〉

= −√
6e2

4πε0R3

〈n + 1n||r||nn − 1〉〈n − 1n − 2||r||nn − 1〉√
(2n + 1)(2n − 3)

×C20
111−1C

nn
n−1n−111C

n−2n−2
n−1n−11−1

= e2a2
0

4πε0R3

8 24nn2n+4(n2 − 1)n+2

(2n + 1)2n+3(2n − 1)2n+1
. (2)

Here R is the separation between the atoms, e is the
elementary charge, a0 is the Bohr radius, and C..

.... is a
Clebsch-Gordan coefficient. The radial matrix elements were
calculated using hydrogenic wave functions for which

〈n − 1,n − 2||r||n,n − 1〉 = −21/24nnn+1(n − 1)n+2

(2n − 1)2n+1/2
a0,

〈n + 1,n||r||n,n − 1〉 = 21/24n+1(n + 1)n+2nn+3

(2n + 1)2n+5/2
a0.

For large n we find the expected n4 dipole-dipole scaling Vdd �
e2a2

0
4πε0R3 8n4.

The eigenvalues of the Hamiltonian (1) are U± = 1
2 (δ ±√

δ2 + 4V 2
dd). At large R a pair of noninteracting atoms has

zero energy so the effective blockade shift in the limit of
negligible two-atom excitation, which is relevant for gate
operation, is simply B = U+ (we take the plus sign since
δ < 0). The blockade shift is plotted in Fig. 2 together with
the blockade for a pair of atoms in low angular momentum
states. We see that for the same principal quantum number the
circular states have a much smaller blockade shift. As we will
show below they are nonetheless useful for gate operations
due to their much longer radiative lifetimes.
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FIG. 2. (Color online) Blockade shift versus R for circular states
n = 90,100,110 (solid lines), the n = 100 circular state in a 90◦

geometry (dotted line), and the Cs 100s state (dashed line).
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When the quantization axis is perpendicular to the molec-
ular axis the dipole-dipole operator is

V̂
(π/2)

dd = −1

2
V̂

(0)
dd − e2

4πε0R3

3

2

∑
p

(
C

2,2p

1p1p − C20
1p1p

)
rAprBp.

The selection rules are now m + m′ = 0, ± 2, and there
is a resonant interaction |cncn〉 ↔ |n,n − 2,n − 2〉A|n,n − 2,

n − 2〉B . The matrix element is

Vdd = A〈n,n − 2,n − 2|B〈n,n − 2,n − 2|V̂ (π/2)
dd |cncn〉

= − e2

4πε0R3

3

2

〈nn − 2||r||nn − 1〉2

2n − 3

×C2−2
1−11−1

(
Cn−2n−2

n−1n−11−1

)2

= e2a2
0

4πε0R3

27

8
n2(n − 1), (3)

where we have used 〈nn − 2||r||nn − 1〉 =
3
2n

√
2n − 1

√
n − 1. For this geometry we get a much

weaker interaction scaling as n3. Since it is resonant B = Vdd

and the interaction strength falls off as 1/R3, which is
advantageous at long range. However, we will be interested
in values of R < 5 μm and will therefore consider only the
parallel geometry in the following.

The radiative lifetime for the circular state |cn〉 due to decay
to the next circular state |cn−1〉 is

τ0 = 3πε0�c3

ω3
ege

2|〈cn−1|r−1|cn〉|2 , (4)

where the transition frequency is ωeg = EH
2�

[1/(n − 1)2 −
1/n2]. Using the expressions given above for the reduced
matrix elements we find

τ0 = 24πε0�
4c3

E3
Ha2

0e
2

(2n − 1)4n−1

24n+1n2n−4(n − 1)2n−2
. (5)

This is the lifetime at zero temperature. The finite temperature
blackbody correction gives

1

τ
= 1

τ0

(
1

e�ωeg/kBT − 1
+ 1

)
, (6)

where kB is the Boltzmann constant and T is the temperature.
The circular state lifetimes from (6) are compared with the
lifetime of Cs ns states in Fig. 3. Because the transition fre-
quency ωeg is in the microwave regime, the finite temperature
correction factor is bigger than that for low angular momentum
Rydberg states.

IV. INTRINSIC ERROR ESTIMATES

The intrinsic error of a Rydberg blockade CZ gate arises
from decoherence due to the finite lifetime τ of the Rydberg
state and state rotation errors due to imperfect blockade. In the
strong blockade limit � 
 B 
 ω10, where � is the Rydberg
state excitation Rabi frequency, and ω10 is the qubit frequency
shown in Fig. 1. The intrinsic gate error E1 averaged over the
input states in the computational basis (|00〉,|01〉,|10〉,|11〉)
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FIG. 3. (Color online) Radiative lifetime of the circular states and
ns states at 0 and 300 K. The ns state lifetimes were calculated using
approximate expressions given in Ref. [24].

for the scheme shown in Fig. 1 is [2,18]

E1 = 7π

4�τ

(
1 + �2

ω2
10

+ �2

7B2

)
+ �2

8B2

(
1 + 6

B2

ω2
10

)
. (7)

The first term in Eq. (7) is the Rydberg decay error due to the
finite lifetime τ of the Rydberg circular state, and the second
term is the imperfect blockade error. In the limit of ω10 �
(B,�) we can extract a simple expression for the optimum
Rabi frequency which minimizes the error

�opt = (7π )1/3 B2/3

τ 1/3
. (8)

Setting � → �opt leads to a minimum averaged gate error of

Emin = 3(7π )2/3

8

1

(Bτ )2/3
. (9)

Figures 4 and 5 show the calculated Emin and �opt for
several states as a function of atomic separation R. Although
the intrinsic error appears to become arbitrarily small at small
R, we must impose a minimum value of R to avoid overlap
of the spatially extended Rydberg wave functions. The atomic
size scales as n2 and for n = 110 and l = 109, the peak of the
radial wave function is at 0.64 μm. The probability of finding
the electron outside a sphere with radius 1 μm is less than
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FIG. 4. (Color online) The minimum intrinsic error from Eq. (9)
for n = 80 (top curve), 100 (middle curve), and 110 (bottom curve) as
a function of the separation between the two atoms. The gray region
is excluded due to Rydberg wave function overlap (see text).
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FIG. 5. (Color online) Optimal Rabi frequency from Eq. (8) for
n = 80 (bottom curve), 100 (middle curve), and 110 (top curve) as a
function of the separation between the two atoms. The gray region is
excluded due to Rydberg wave function overlap (see text).

10−12. The electron overlap is thus negligible if two Rydberg
atoms are separated by R = 2 μm. With this condition, the
minimum intrinsic gate error in Eq. (9) is 1.6 × 10−7 for n =
110. Compared with low angular momentum states 112p3/2

and 112d5/2 [19], the circular Rydberg states improve the
minimum intrinsic error by about three orders of magnitude.

V. SIMULATED QUANTUM PROCESS TOMOGRAPHY

While the intrinsic error estimates presented above provide
some guidance, the performance of a quantum gate is also
dependent on phase errors which are not captured by the
intrinsic error estimate. Full process tomography simulations
show that entangling gate fidelities may be more than an
order of magnitude larger than the above estimates [19]. We
therefore present process tomography simulations in order to
determine the achievable gate performance. In this analysis we
only account for intrinsic gate errors as described in Sec. IV,
and assume all additional technical errors are negligible.
This corresponds to a situation where the atoms are cooled
to their motional ground state and are held in magic traps
for both the ground and Rydberg states [25,26] so there is
no Doppler dephasing during Rydberg excitation, position-
dependent variations in Rabi frequencies, or AC Stark shifts.
We also assume that we can coherently transfer atoms between
|1〉 and |r〉 states, and that dephasing due to time-varying
magnetic fields is negligible.

A reliable method to characterize the performance of
quantum gates is quantum process tomography (QPT) [27,28].
QPT has been demonstrated with several different physical
systems including linear optics [29], trapped ions [30], and
superconducting circuits [31]. It was also used to numerically
simulate the performance of a Rydberg blockade CZ gate using
low angular momentum Rydberg states in Ref. [32]. Here we
follow the same procedures as in Ref. [32], but for circular
Rydberg states.

We use cesium in the numerical calculations, and for each
atom we include four atomic states (see Fig. 1): qubit |0〉,
qubit |1〉, and reservoir level |g〉 ≡ |6s1/2,mF �= 0〉 in the 6s1/2

ground state, and the Rydberg circular state |r〉. With this set
of basis states the two-atom dynamics are described by density

matrices ρct(t) with dimensions 16 × 16. We take the initial
condition to be a separable state ρct(0) = ρc(0) ⊗ ρt(0), with
c/t for control/target atoms. We calculate the time evolution
by solving the master equation

dρct

dt
= − i

�
[Hct,ρct] + Lct, (10)

with Hct = Hc ⊗ It + Ic ⊗ Ht + �B[
015 0
0 1 ], Lct = Lc ⊗

It + Ic ⊗ Lt, It (Ic) are 4 × 4 identity matrices, and 015

is a 15 × 15 zero matrix. After making the rotating-wave
approximation the Hamiltonian Hc (Ht), and the Liouville
operators Lc (Lt) are given in the basis {|0〉,|g〉,|1〉,|r〉} as

H(c/t) = �

⎛
⎜⎜⎜⎝

−ω10 0 0 �∗
(c/t)/2

0 0 0 0

0 0 0 �∗
(c/t)/2

�(c/t)/2 0 �(c/t)/2 0

⎞
⎟⎟⎟⎠ , (11a)

L(c/t) = γr

⎛
⎜⎜⎜⎝

1
16ρrr 0 0 − 1

2ρ0r

0 7
8ρrr 0 − 1

2ρgr

0 0 1
16ρrr − 1

2ρ1r

− 1
2ρr0 − 1

2ρrg − 1
2ρr1 −ρrr

⎞
⎟⎟⎟⎠ . (11b)

We assume that the Rydberg states decay directly back to
the 16 ground sublevels of Cs with equal branching ratios of
1/16.

The details of simulated QPT of the CZ gate can be found
in Ref. [32]. Here we give a brief overview of the procedure.
We start with 16 linearly independent input states with both
atoms in one of the four states (|0〉, |1〉, (|0〉+|1〉)/√2, and
(|0〉+ı|1〉)/√2. We then solve the time evolution of the master
equation (10) for the CZ pulse sequence of Fig. 1(b) for each of
the input states {πc,(2π )t,πc}, where (π )c is a π pulse between
|1〉 and |r〉 for the control atom, and (2π )t is a 2π pulse between
|1〉 and |r〉 for the target atom. The output states found in
this way may be nonphysical. We then perform maximum
likelihood estimation (MLE) [29] to reconstruct physical
states. This process is so-called quantum state tomography
(QST). From the QST, we can extract a physical χ matrix for
the simulated CZ gate using a maximum likelihood estimator
[29,33]. Finally we quantify the performance of the simulated
CZ gate from the χ matrix.

A widely used measure of quantum processes is the trace
overlap fidelity FO, or error EO = 1 − FO, which are based on
the trace overlap between ideal and experimental (in our case
simulated) χ process matrices. The fidelity error is defined by

EO = 1 − Tr2

[√√
χsimχid

√
χsim

]
, (12)

where χid is the ideal process matrix and χsim is the simulated
physical χ matrix found from QPT accounting for intrinsic
gate errors as described by Eqs. (11).

In Table I we present the errors found from simulated QPT
for the listed atomic states. The process tomography errors
tend to be one to two orders of magnitude larger than Ecb,
which are the errors estimated in Sec. IV for two-qubit product
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TABLE I. Gate errors from simulated QPT for several circular Rydberg states of 133Cs. The reported errors are Ecb, the analytical estimate
found in Sec. IV using computational basis states, trace loss, which is the sum of populations outside the computational basis at the end of the
gate sequence, and EO trace overlap errors from Eq. (12).

133Cs (n = 80) 133Cs (n = 100) 133Cs (n = 110)

Temperature (K) 0 0 0 77 300
Rabi frequency �/2π (MHz) 3.82 5.05 5.6 38.4 60.3
Blockade shift B/2π (GHz) 2.21 5.89 8.71 8.71 8.71
Lifetime (ms) 307 940 1520 4.71 1.21
Trap separation (μm) 2 2 2 2 2
Ecb 1.1 × 10−6 2.8 × 10−7 1.6 × 10−7 7.3 × 10−6 1.8 × 10−5

Trace loss 5.1 × 10−6 1.3 × 10−6 7.0 × 10−7 3.3 × 10−5 8.1 × 10−5

EO 2.6 × 10−5 1.9 × 10−5 8.8 × 10−6 1.1 × 10−4 2.3 × 10−4

states in the computational basis. This is to be expected since
the analytical estimates are derived from the probabilities of
the gate succeeding and do not account for output state phase
errors. The trace loss quantifies the population in states outside
the computational basis at the end of the gate sequence. These
errors are due to spontaneous emission from Rydberg states
and imperfect blockade, which leaves atoms Rydberg excited
at the end of the gate. The process error based on trace overlap
EO can be as low as 8.8 × 10−6 for the n = 110 circular
Rydberg state in a cryogenic environment. We emphasize that
both circular states and a cryogenic environment are needed
to reach this error level since the circular state lifetime is
substantially reduced due to blackbody radiation in a room
temperature environment, as shown in Fig. 3.

VI. DISCUSSION

We have proposed and simulated a Rydberg blockade
mediated two-qubit quantum gate between two individually
addressed neutral atoms using circular Rydberg states. We
show that the gate error based on simulated QPT for Cs atom
states can be at the level of ∼2 × 10−4 for the n = 110 circular
Rydberg state at room temperature. With the help of a cryostat
the process error can be as low as ∼9 × 10−6. These small
error numbers can be contrasted with the optimal result found
for low angular momentum Rydberg states in [19], which was
∼1 × 10−3. While the use of circular states can potentially
reduce the gate error by more than a factor of 100 the circular
states present challenges for practical use. We discuss these
issues in the following sections.

A. Excitation of circular states

Of course, in order to implement such a gate it is necessary
to coherently excite circular Rydberg states on a fast time scale
with very high fidelity. The production of circular states has
been demonstrated with lithium [34–36], rubidium [37,38],
and sodium [39] atoms. Of particular relevance to the ideas
proposed here cold Rb atoms have been recently excited to Ry-
dberg states and magnetically trapped [40]. There are two main
methods to produce circular states both of which start from
low angular momentum Rydberg states. The first method is
called microwave adiabatic transfer[34,36,38,41,42]. It holds
the microwave frequency constant and makes the frequency
resonant with transitions from m to m + 1 by way of the

second order Stark effect in a time-varying electric field. Under
the constant microwave frequency and the varying amplitude
electric field, the atoms are transferred to the circular states
via a series of adiabatic passages. The second method makes
use of crossed electric and magnetic fields [35,37,42,43]. The
atoms start from an m = 0 state with a large electric field
and weak magnetic field. When the electric field is gradually
decreased to zero and the crossed magnetic field is constant,
the atom is adiabatically transferred from the largest electric
dipole energy to the largest magnetic dipole energy, which just
corresponds to a circular state with maximal m. The efficiency
of circular state transfer can be nearly 100% [34,42].

The microwave adiabatic transfer and crossed electromag-
netic field approaches can in principle be rapid. Nevertheless
they are not appropriate for gate operation since they result
in substantial population of intermediate states. In such a case
Rydberg blockade of the final state will result in population
being left behind in a Rydberg excited state leading to a large
gate error. Stimulated Raman adiabatic passage (STIRAP)
provides a promising alternative approach. STIRAP has been
widely applied to three level atoms for transfer from an initial
state to a final state without populating the intermediate state.
As has been shown by Vitanov the idea of dark state transfer
can be generalized to multistate problems [44]. In order to
prevent population of the intermediate states all excitation
fields must be detuned from all intermediate states. In Ref. [44]
there is a detailed discussion of the off-resonant case using a
counterintuitive pulse sequence. The Stokes pulse precedes the
pump pulse, where the Stokes pulse �S couples the final state
|ψN 〉 and the last intermediate state |ψN−1〉 and the pump pulse
�P couples the initial state |ψ1〉 and the first intermediate state
|ψ2〉. These two pulses are shaped, so that the pump pulse has
a time delay but still has an overlap with the Stokes pulse.
Different pulse sequences for the intermediate pulses �k,k+1,
which couple the neighboring intermediate states |ψk〉 and
|ψk+1〉, are possible as discussed in Ref. [44].

A possible implementation for exciting |c112〉 is shown in
Fig. 6. Let us assume all intermediate pulses are constant in
time. We use the qubit state |1〉 = |6s1/2,F = 4,mF = 0〉 as
the initial state |ψ1〉 and the circular state |c112〉 as the final state
|ψN=112〉. With the choice of states in Fig. 6, �P = �1,2 is an
optical pulse at 459 nm with σ+ polarization, �2,3 is an optical
pulse at 1038 nm with σ+ polarization, �2k,2k+1 is a microwave
pulse with σ+ polarization, and �2k−1,2k is a microwave pulse
with σ− polarization when k � 2. All of the single photon
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FIG. 6. Illustration of multiphoton STIRAP process for transfer
from the ground state |ψ1〉 to a circular Rydberg state |ψN 〉 in
Cs. The intermediate states are |ψ2〉 = |7p1/2,F = 4,mF = 1〉 and
two chains of Rydberg states. The odd numbered chain consists of
the states |ψ2k−1〉 = |n = 170 − k,l = 2k − 2,m = 2k − 2〉 starting
from |ψ3〉 = |168,2,2〉 (k = 2), and ending with |ψN−1〉 = |ψ111〉 =
|114,110,110〉 (k = 56). The even numbered chain consists of the
states |ψ2k〉 = |n = 56 + k,l = 2k − 1,m = 2k − 1〉 starting from
|ψ4〉 = |58,3,3〉, (k = 2), and ending with the final state |ψN 〉 =
|ψ112〉 = |112,111,111〉 (k = 56). The frequencies needed for the
STIRAP chain coupling ψ3〉 to ψ112 range from 859 to 9.1 GHz.

microwave frequencies are nondegenerate, so all the single-
photon Rabi frequencies could be controlled independently.
We choose the signal and pump Rabi frequencies [α in Eq. (6)
of Ref. [44]] to be 14 MHz, the intermediate Rabi frequencies
ξk,k+1 = 100 MHz for all the k in Eq. (7) of Ref. [44], and
the intermediate detunings to be � = 90 × α in Eq. (24a)
of Ref. [44]. With these parameters, Eq. (41a) of Ref. [44]
shows that the overall Rabi frequency for transfer from |ψ1〉
to |ψN 〉 could be as large as � = 2π × 5 MHz, and Eq.
(45) of Ref. [44] shows that the population summed over all
intermediate states can be suppressed to as low as Pint ∼ 10−4.
Since the intermediate states are high-lying Rydberg levels
with average lifetimes τint > 100μs (see Fig. 3) we estimate the
spontaneous emission error from the intermediate states in a π

pulse to be πPint/(�τint) ∼ π10−4/(2π × 5 × 100) ∼ 10−7,
which is small compared to the gate process error in Table I.

Note that the first pulse, which is optical, can be focused
to selectively excite control or target qubits. All subsequent
pulses are at microwave frequencies and therefore give off-
resonant AC Stark shifts to the qubits, but negligible population
transfer out of the computational basis. These AC Stark shifts
are in principle known and if necessary can be compensated
with additional off-resonant laser pulses. The very large
electric dipole matrix elements between Rydberg states which

scale as n4 will mitigate power requirements for fast state
transfer.

B. Errors due to excitation of other Rydberg states

Inspection of Table I shows that the best gate performance is
obtained when the blockade interaction is very large, about 8.7
GHz at n = 110. As was pointed out in Ref. [19] blockade-
induced level shifts can lead to excitation of a neighboring,
nontargeted Rydberg level leading to additional gate errors.
Such errors were accounted for in Ref. [19] by extending
the Hilbert used for simulation of QPT to include additional
Rydberg levels.

While a similar procedure could be followed here we argue
that it is not necessary for the multiphoton excitation process
described in the preceding section. The frequency separation
between |c110〉 and |c109〉 is 5.0 GHz. This implies that if the
control atom is excited to |c110〉 by the first pulse of the CZ

gate sequence, then |c110〉 will be off-resonance for the target
atom by 8.7 GHz, but other states will be shifted up in energy
to a position less than 8.7 GHz from |c110〉, which would lead
to a smaller effective blockade.

This situation must be accounted for when analyzing low
angular momentum states excited by a one- or two-photon
transition. Here we use a multiphoton process to end up in
a state with definite l,m. Any state at lower energy than a
circular state will have l′ < l and m′ < m and therefore will
not be populated due to angular momentum selection rules,
even though the effective detuning of such states is reduced by
the blockade interaction.

In conclusion we have analyzed the use of circular Ryd-
berg states for implementing quantum gates using Rydberg
blockade. The circular states have the potential of gate errors
at the level of 10−5, a factor of 100 times lower than what
is possible with low angular momentum states. This would
put the Rydberg blockade gate deep in the regime of fault
tolerant quantum computing architectures. The use of circular
states entails significant experimental challenges related to
the requirement of fast and coherent excitation. While the
required capabilities are not particularly close to what has
been demonstrated to date, with ongoing developments in laser
cooling and trapping techniques and frequency agile laser and
microwave sources experiments along the lines outlined here
may become possible.
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Büchler, and I. Lesanovsky, Quant. Info. Proc. 10, 885 (2011).

[11] Y. Han, B. He, K. Heshami, C.-Z. Li, and C. Simon, Phys. Rev.
A 81, 052311 (2010); B. Zhao, M. Müller, K. Hammerer, and
P. Zoller, ibid. 81, 052329 (2010).

[12] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Nature Phys. 5, 110 (2009).
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